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Abstract-A one-dimensional, two-layer model describing the thermal structure in large bodies of 
stratified water is developed. The model accounts for the nonlinear interaction between the wind induced 
turbulence and the buoyancy gradients produced by surface heating, the effects of the attenuation of 
the solar radiation in the body of water. The model is applied to predict the seasonal variation of the 
depth of the thermocline and the vertical temperature distribution during the stratification period of 

Cayuga Lake, New York. The results agreed fairly well with the field data. 

NOMENCLATURE 

C P’ specific heat; 

93 acceleration due to gravity; 

H, depth of lake; 

h(t), depth of the upper layer; 

1, average value of the solar radiation intensity; 

AI, half of the annual variation of solar radiation 
intensity; 

6 time; 

T(z, t), temperature of the lower layer; 
equilibrium temperature defined by 
equation (8); 

an average value of the equilibrium 
temperature; 
half of the annual variation of the 
equilibrium temperature; 

temperature at the bottom of the lake; 
temperature of the upper layer; 
turbulent heat flux; 
radiative heat flux; 
= J(?Jp), friction velocity; 
vertical distance measured downward from 
the surface. 

Greek symbols 

s 1 

0(q)dq = 0.75; 
0 

coefficient of volumetric expansion of water; 
von K&rman constant, z @4; 
extinction coefficient; 
phase angles associated with the equilibrium 
temperature and the solar radiation intensity 
respectively; 

s I 

r$(r/) drj = 0.45; 
0 

dimensionless variable defined by 
equation (3); 
single scattering albedo; 
density of water; 
Stefan-Boltzmann constant; 
= /lz, optical variable; 
= PH, optical depth of the lake; 
surface shear stress induced by wind; 
dimensionless temperature defined by 

equation (2). 

INTRODUCTION 

LARGE bodies of water such as lakes provide a con- 
venient source of cooling water supply to electric 
generating power plants. The cold water available at 
depth in lakes is used in the stream condensers and 
then returned back to the lake. A knowledge of the 
temperature structure within a large body of water and 
the changes that take place in it are essential before 
the perturbing effects of the added heat load on the 
lake temperature can be assessed. Quantitative features 
of the stratification cycle of lakes have been described 
in the literature [l, 23 and the seasonal stratification 
cycle of temperature has been studied by various in- 
vestigators [3,7]. In the present study a one-dimen- 
sional, two-layer model is developed for the prediction 
of the seasonal variation of the vertical temperature 
distribution in stratified lakes. The model allows for 
the surface heat exchange, the interaction between the 
wind induced turbulence and buoyancy gradients, and 
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includes the solar heating effects as a bulk process by 
considering the absorption and scattering of the solar 

radiation with depth in the body of water. 

ANALYSIS 

The one-dimensional, time dependent energy equa- 
tion for an incompressible fluid under the assumption 

of horizontal homogeneity is taken as 

where T is the temperature, t is the time, q and q’ are 
the turbulent and radiative heat fluxes respectively, z is 
the vertical coordinate in the body of water measured 

from the surface, p is the density, CD is the specific heat 
and H is the depth of the lake. A two-layer model is 
now considered for the vertical temperature profile in 
the lake : 

(i) A well mixed upper layer in the region 0 < z < h(t) 
where the vertical temperature distribution is con- 
sidered uniform and taken as 7;(t), and 

(ii)A lower layer in the region h(r) < z < H where the 

temperature varies from T,(t) at 2 = h(t) to a constant 
value TH at the bottom of the lake z = H. It is further 

assumed that the lake is sufficiently deep, hence the 
heat losses at the bottom of the lake are negligible. 
For convenience in the analysis a dimensionless tem- 
perature 0 and a dimensionless coordinate q are defined 

for the lower layer as: 

T,(r) - T(z, t) 

and 

z-h(t) 
v = H_&(r)’ in h(t) d z G H. (3) 

If tl(r7) is represented by a third-degree polynomial in 
the form 

U(q) = .40+A,q+A,q’+A3~3 in 0 d 9 6 1 (4a) 

with the boundary conditions 

H(q) = 0 at rl = 0, (4b) 

d0 
WI) = I, -=0 and c=O at q=l, (4~) 

dr/ dr12 

one finds that the temperature profile B(q) in the lower 
layer is represented by 

O(q) = 34 - 3q’ + q3, O<r7<1 (5) 

Clearly, if T,(t) and h(t) are known, the corresponding 
q and O(q) are determined from equations (3) and (5) 
respectively, and the temperature distribution T(z, t) in 
the lower layer from equation (2) as 

T(z, r) = T,(t) - [T,(r) - &I&V), h(r) < z < H. (6) 

Two equations that are needed for the determination 
of T,(t) and h(t) are now derived from the energy 
equation (1) as described below. 

The energy equation (1) is integrated with respect 
to z over the entire depth of the lake from z = 0 to 

; = tf to yield 

where the radiative heat flux at the bottom of the lake 
is assumed to be zero and yS represents the sum of the 

turbulent and radiative heat fluxes at the surface. Now. 
yS is represented in the form [8] 

L/,, = K ‘( 7; - 7, ) (8) 

where K’ is the heat exchange coefficient at the surface 
and T, is an equilibrium temperature, and the integral 
term in equation (7) is evaluated by utilizing equations 

(2), (3) and (5) as 

J’ 

H 

T(z.r)dz=(H-h)T,-a(7;-7;I)(H-h) (9) 
h(t) 

with 

G!s 
I 

1 
O(@dr/ = 0.75. (10) 

0 

The substitution of equations (8)-( 10) into equation (7) 
gives the first of these two equations as 

(H-~H+ah)~+,(~-T~)~=~~-(~-T,) (lla) 
P 

where the annual variation of the equilibrium tem- 

perature, T,, is represented by [9] 

(lib) 

Here 7i, is an average value, AT, is half of the annual 
variation and 4 depends upon the conditions from 

which the computations begin. 
A second equation is obtained by taking the first 

moment of equation (1); that is, equation (1) is multi- 
plied by z and integrated from 2 = 0 to z = H to yield 

dT, d ” 
th2%+dr 

s h 

zT(z, r)dz+ hT, ‘; 

where q and q’ are the turbulent and radiative heat 
fluxes respectively. Equations (2) (3) and (5) are intro- 
duced into equation (12), the integration involving the 
temperature is performed by noting that the tem- 
perature is independent of z and equal to q(t) in the 
upper layer, 0 ,< z < h(t); after some manipulation one 
obtains 

[(a-p)h2+H(2pi*)h+H2+i.)]$ 

+[2(1-y)h+(Z;-x)H][T&]$ 

= Sa&dz+/;&dz 

with 

(13) 

@dr/ = 0.45. (14) 
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The turbulent heat transfer term on the RHS of equa- 
tion (13) can be related [4,9, lo] to the wind stress 
acting on the water surface by making use of the fact 
that the thermal stratification in a lake acts as a barrier 
to mixing, while the wind stress creates turbulence that 
acts against the buoyancy gradient. Therefore, a mech- 
anical energy balance in the water relates the kinetic 
energy input from the wind directly to the trans- 
formation of the potential energy into kinetic energy 
by convection within the layer if the turbulent energy 
dissipation due to viscosity is neglected; the kinetic 
energy input into the water is then related to the wind 
stress at the water surface [4, lo]. With an analysis 
based on these considerations it can be shown that the 
integral term involving the turbulent heat flux in 
equation (13) is related to the wind stress t, at the 
surface by [4,9-121 

Once the function G(T) is known from the solution of 
equation (16) subject to appropriate boundary condi- 
tions, the net radiative heat flux q’(r) is determined from 

where 

(Isa) 

(15b) 

The dete~ination of the radiative heat flux, q’, how- 
ever, requires the solution of the equation of radiative 
transfer over the entire depth of the lake. The radiation 
part of the problem to account for the bulk heating 
of the water due to the penetration of the solar 
radiation is treated by considering a plane-parallel, 
absorbing, emitting, isotropically scattering gray 
medium with azimuthal symmetry. The Pi-approxi- 
mation of the spherical harmonics method is used to 
solve the radiation problem. In this method the equa- 
tion of radiative transfer takes the form [13j 

d’G(z) 
------K2(r) = -4K2i7T(r, t) in 0 < z < ~~ 

dr2 
(16) 

where 
K2 = 3(1--c,) 

T(t, t) = temperature distribution in the lake. 

4w = $K cosh(Kz0)+(l+@C2)sinh(Kz0) ’ 

dG(d q’(z) = - f TT--. (17) 

We note that equation (16) is coupled to the energy 
equation because it contains the unknown temperature 
distribution function T(r, t). For most lakes the source 
term on the RHS of equation (16) is very small com- 
pared to the solar radiation energy incident on the lake 
surface. Then the coupling is removed and equation 
(16) is simplified as : 

dG(r) ---K2G(?)=0 in O<~<T~. 
dr2 

(18) 

The boundary conditions for this equation are estab- 
lished by assuming that the solar radiation incident on 
the lake surface is specified and that no radiation is 
coming from the bottom of the lake. With this con- 
sideration the boundary conditions for equation (18) 
are taken in the Marshak boundary condition approxi- 
mation as [13]. 

G(r) - f F = 4n[f+Alsin@t+#‘)], r=O (19a) 

G(T)++-= , dG(r) o 

f=TO. (19b) 

The boundary condition (19a) assumes that the annual 
variation of the intensity I of the solar radiation 
incident on the water surface is specified as 

I+ AI sin(Qt + 4’) 

where 1 is an average value and Al is half of the annual 
variation of the solar radiation intensity, Q = 2n/365 
day-’ and the value of @ depends on the conditions 
at the start of computations. 

The solution ofequation (18) subject to the boundary 
conditions (19) is straightforward. Knowing G(r), the 
net radiative heat flux q’(z) is obtained from equation 
(17)as 

. {[cosh(Kro) +- $K sinh(Kzo)] cosh(Kr) - [sinh(Kre) + fK cosh(Kr,-,)] sinh(Kr)} . (20) 

Noting that 7; = fiz and r0 = flH, the integral term q’ da in equation (13) becomes 

jHq,di= a(iiAlsin(~r+#.)l.jtanh(KBH)+~KIIcoshl:BHj]} 
0 jX +($++K’)/Itanh(KfiH) 

(21) 

Introducing equations (15) and (21) into equation (13) the desired second equation becomes 

w,*3 n[i+Alsin(~r+B’)].~anh(KBH)+:KC1-cosh:KBH~} (22) 
= --+ 

w pC,[BK + i$+4K2M tanWPH)l 
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FIG. 1. Comparison of the computational and observed stratification cycle of Cayuga Lake, 
New York. 

To summarize, equations (11) and (22) provide two 
coupled, first-order nonlinear ordinary differential 

equations for the determination of the temperature 
T,(t) in the upper layer and the depth h(t) of the thermo- 
cline. Then, the temperature distribution in the lower 
layer is determined by equations (3). (5) and (6). 

RESULTS 

Equations (11) and (22) were solved numerically by 

using a Runge-Kutta method. The computations were 
performed for the actual conditions that correspond to 
Cayuga Lake, New York [14] with the input par- 

ameters taken as [ 14, 151 

T,= ll+lhsin[$r-0.5311, “C 

K’ = 180 Btulft’day “C 

H = 200ft 

I = 1955+1120sin 365t-0.049 , Btu/ft’day. 
i2n i 

The semi-empirical relation between the wind stress 7$ 

at the surface and the wind speed given by Munk and 

Anderson [16] is used to evaluate the friction velocity 
w*. The minimum temperature during spring homo- 

thermy was assumed to be 2.9”C. The absorption and 
scattering coefficients for water and the particles in 
suspension were assumed to be 0.31 ftt ’ and 0.63 ft-’ 
respectively; these values were estimated from recent 
data given in reference [ 171. The calculations started 
from the minimum surface temperature of the lake that 
corresponded to the homothermal state. To avoid the 
computational difficulty at time t = 0, calculations were 
started with some specific values of T,(t) and h(t) slightly 
away from the origin. Figure 1 shows a comparison 
of the computed and observed [18, 191 values of tem- 
perature cycle for the Cayuga Lake, New York. Figure 2 
is a comparison of the computed and observed [18] 
depth of the thermocline as a function of time. The 
agreement between the observed and computed values 
is fairly good. 
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FIG. 2. Comparison of calculated and ob- 

served thermocline depths for Cayuga 
Lake, New York. 
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MODELE UNIDIMENSIONNEL POUR LES VARIATIONS SAISONNIERES 
DES DISTRIBUTIONS DE TEMPERATURE DANS LES LACS STRATIFIES 

R&sum&Un modtle unidimensionnel b deux couches est dkveloppt afin de dtcrire la structure thermique 
des grandes &endues d’eau stratifiCes. Le modele tient compte de l’intttraction non-lintaire entre la 

turbulence causte par le vent, les gradients des forces de gravitC produits par l’tchauffement de la surface 

et des effets de l’atttnuation du rayonnement solaire au sein de l’eau. Le modkle est applique a la prttvision 
des variations saisonnikres de la profondeur des thermoclines et la destribution verticale des temptratures 
pendant la pbriode de stratification du lac Cayuga (New-York). Les rtsultats sont en assez bon accord 

avec l’ensemble des mesures. 

EIN EINDIMENSIONALES MODELL FijR DIE SAISONBEDINGTEN VARIATIONEN 
DER TEMPERATURVERTEILUNG IN GESCHICHTETEN GEW#SSERN 

Zusammenfassung-Es wird ein eindimensionales Zweilagenmodell entwickelt, das die thermische Struktur 
in groljen, geschichteten Wassermengen beschreibt. Das Model1 beriicksichtigt den nichtlinearen 
Zusammenhang zwischen den windinduzierten Turbulenzen und den Auftriebsgradienten aufgrund der 
OberfltichenerwLrmung wie den EinfluI3 der Absorption der Solarstrahlung im Wasserklirper. Es dient 
zur Vorhersage der saisonbedingten Schwankungen der Tiefenlage der Thermokline und der vertikalen 
Temperaturverteilung wLhrend der Schichtungszeit des Cayuga-Sees, New York. Die Ergebnisse stimmen 

relativ gut mit den Felddaten iiberein. 

OAHOMEPHAR MOQEJlb CE30HHOl-0 MSMEHEHMJI TEMl-IEPATYPbI 
B CJIOIlX 03EP 

AHHOTauHB - CO3naHa OnHOMepHaR AByXCnOkHa5l MOaenb JWla OnACaHWII TepMOCTpyKTypbI B 
6onbunix MaCCaX CTpaTH@HuHpOBaHHOi% BOAbI. B MOAenH YWTbtBaeTCa HeneHekHOe B3aHMOneii- 

CTBWe MexKny Bbl3BaHHOfi BeTpOM Typ6yJleHTHOCTbIO A nepenanaMH B nOn?,eMHOii CLiJIe, Bbl3BaHHblMA 

HarpeBaHHeM nOBepXHOCTH, %$@eKTaMH 3aTyXaHHn COflHe’iHOi? pa,lHaUMH B MaCCe BO+lbI. MoAenb 

HCnOJlb3yeTCs LWi paCYeTa Ce30HHOrO R3MeHeHHII rny6HHbl TepMOKJlHMaTa li BepTHKanbHOrO 
pacnpeneneHHs TeMnepaTypbI B nepcron CTpaTH$GiKaUHH Ha 03epe Kakmra IUT. HbK&OpK. Pe3ynb- 

TaTbI paC’ieTOB JJOBOJlbHO XOpOUrO COrnaCytoTCR C 3KCnepHMeHTaJlbHbIMH ,JaHHblMH. 


