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Abstract—A one-dimensional, two-layer model describing the thermal structure in large bodies of

stratified water is developed. The model accounts for the nonlinear interaction between the wind induced

turbulence and the buoyancy gradients produced by surface heating, the effects of the attenuation of

the solar radiation in the body of water. The model is applied to predict the seasonal variation of the

depth of the thermocline and the vertical temperature distribution during the stratification period of
Cayuga Lake, New York. The results agreed fairly well with the field data.

NOMENCLATURE

C,, specific heat;

g, acceleration due to gravity;

H, depth of lake;

h{t), depth of the upper layer;

i, average value of the solar radiation intensity;

Al,  half of the annual variation of solar radiation
intensity;

t, time;

T(z,t), temperature of the lower layer;

1,,  equilibrium temperature defined by
equation (8);

T.,  an average value of the equilibrium
temperature;

AT,, half of the annual variation of the
equilibrium temperature;

Ty, temperature at the bottom of the lake;

T.(t), temperature of the upper layer;

q, turbulent heat flux;

q, radiative heat flux;

w*, = ./(1,/p), friction velocity;

z, vertical distance measured downward from
the surface.

Greek symbols

607 dn = 0-75;

1
[}

0, coefficient of volumetric expansion of water;
K, von Karman constant, ~ 0-4;

B, extinction coefficient;

¢, ¢’, phase angles associated with the equilibrium

temperature and the solar radiation intensity
respectively;
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1
J 10(n) dn = 0-45;
0

#, dimensionless variable defined by
equation (3);

, single scattering albedo;

2, density of water;

o, Stefan-Boltzmann constant;

T, = fiz, optical variable;

To, = fH, optical depth of the lake;

Tgs surface shear stress induced by wind;

0, dimensionless temperature defined by

equation (2).

INTRODUCTION

LARGE bodies of water such as lakes provide a con-
venient source of cooling water supply to electric
generating power plants. The cold water available at
depth in lakes is used in the stream condensers and
then returned back to the lake. A knowledge of the
temperature structure within a large body of water and
the changes that take place in it are essential before
the perturbing effects of the added heat load on the
lake temperature can be assessed. Quantitative features
of the stratification cycle of lakes have been described
in the literature [1,2] and the seasonal stratification
cycle of temperature has been studied by various in-
vestigators [3,7]. In the present study a one-dimen-
sional, two-layer model is developed for the prediction
of the seasonal variation of the vertical temperature
distribution in stratified lakes. The model allows for
the surface heat exchange, the interaction between the
wind induced turbulence and buoyancy gradients, and
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includes the solar heating effects as a bulk process by
considering the absorption and scattering of the solar
radiation with depth in the body of water.

ANALYSIS

The one-dimensional, time dependent energy equa-
tion for an incompressible fluid under the assumption
of horizontal homogeneity is taken as

Tz, 1) _ ¢

Ct (z

(+¢) in 0<z<H (1)
where T is the temperature, ¢ is the time, g and ¢" are
the turbulent and radiative heat fluxes respectively, z is
the vertical coordinate in the body of water measured
from the surface, p is the density, C,, is the specific heat
and H is the depth of the lake. A two-layer model is
now considered for the vertical temperature profile in
the lake:

(i) A well mixed upper layer in the region 0 < z < h(t)
where the vertical temperature distribution is con-
sidered uniform and taken as T,(t), and

(ii) A lower layer in the region h(t) < z < H where the
temperature varies from T(t) at z = h{t) to a constant
value Ty at the bottom of the lake z = H. It is further
assumed that the lake is sufficiently deep, hence the
heat losses at the bottom of the lake are negligible.
For convenience in the analysis a dimensionless tem-
perature § and a dimensionless coordinate # are defined
for the lower layer as:

_TO-TE

ol e ,, 0
0(n) TO-T, hny<z<H (2
and
z—h(1) ,
ﬂ_H’/’;—(B, hi)<z<H. 3)

If 6(n) is represented by a third-degreec polynomial in
the form

0(n) = Ao+ A+ 477+ 430> In 0< <l (4a)

with the boundary conditions
O(n) =0 at

2

8 d*o
—=0 and ——5=0 at n=1, (4o
dy dn

one finds that the temperature profile 8(s) in the lower
layer is represented by

n=~0, (4b)

6(n) = 1,

00))=3n—3n>+n*,  O0<y<1 (5)

Clearly, if Ty(t) and h(t) are known, the corresponding
# and 0(n) are determined from equations (3) and (5)
respectively, and the temperature distribution Tz, t) in
the lower layer from equation (2) as

T(z, 1) = Ty(t) = [ To(e) — T JO(n),

Two equations that are needed for the determination
of T,(t) and h(t) are now derived from the energy
equation (1) as described below.

The energy equation (1) is integrated with respect
to z over the entire depth of the lake from z =10 to

hty<z < H. (6)

:= H toyield

; d7, ¢ ¥ - hds dh

/)Cp [1 (j7+;;iJh(,) T(z,)dz+T; ;j;i = ¢ (7)
where the radiative heat flux at the bottom of the lake
is assumed to be zero and ¢, represents the sum of the
turbulent and radiative heat fluxes at the surface, Now,
g is represented in the form [8]

g = K'(1,-T) (8)

where K’ is the heat exchange coefficient at the surface
and T, is an equilibrium temperature, and the integral
term in equation (7) is evaluated by utilizing equations
(2), (3) and (5) as

H
J T(z,0)dz = (H=WT,— (T~ Ty)(H—h) (9)
hit)

with

1
o= J 0(7)dn = 075. (10)
0
The substitution of equations (8)—(10) into equation (7)
gives the first of these two equations as
dh K

dr.
H—oH+oh)—+o(T,—Ty)— = — (T.—T,) (11
( aH+o )dt +a( s H)df [)C ( e s) ( a)

P
where the annual variation of the equilibrium tem-
perature, T,, is represented by [9]
T.— T+ ATsin( 2% 46 11b
=T+ eSlﬂ(365f+¢>~ (11b)
Here T, is an average value, AT, is half of the annual
variation and ¢ depends upon the conditions from
which the computations begin.
A second equation is obtained by taking the first
moment of equation (1); that is, equation (1) is multi-
plied by z and integrated from z = 0 to z = H to yield

4T d j" dh

zT dz+hT, —
2T de T dr (z.1)dz+hl,

h dr

H H r
4 q
= | Lazv| Ld:
L pCp J‘O pCp

where ¢ and ¢" are the turbulent and radiative heat
fluxes respectively. Equations (2), (3) and (5) are intro-
duced into equation (12), the integration involving the
temperature is performed by noting that the tem-
perature is independent of z and equal to T(t) in the
upper layer, 0 < z < h(t); after some manipulation one
obtains

) dT,
[e— )R>+ H2y —ayh+ H (5 —7)] R

d#
+ Rl ph+ 2= H][T=Tal 5 (13)
H Hi r
Y f v g
o) /’Cp 0 pcp
with
1
y = j n@dn = 0-45. (14)
0
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The turbulent heat transfer term on the RHS of equa-
tion (13) can be related [4,9,10] to the wind stress
acting on the water surface by making use of the fact
that the thermal stratification in a lake acts as a barrier
to mixing, while the wind stress creates turbulence that
acts against the buoyancy gradient. Therefore, a mech-
anical energy balance in the water relates the kinetic
energy input from the wind directly to the trans-
formation of the potential energy into kinetic energy
by convection within the layer if the turbulent energy
dissipation due to viscosity is neglected; the kinetic
energy input into the water is then related to the wind
stress at the water surface [4, 10]. With an analysis
based on these considerations it can be shown that the
integral term involving the turbulent heat flux in
equation (13) is related to the wind stress 7, at the
surface by [4,9-12]

H %3
g w
——dz 15a)
L pC, ogx (
where
w* = \/ (Ei> = friction velocity. (15b)
P

The determination of the radiative heat flux, ¢, how-
ever, requires the solution of the equation of radiative
transfer over the entire depth of the lake. The radiation
part of the problem to account for the bulk heating
of the water due to the penetration of the solar
radiation is treated by considering a plane-parallel,
absorbing, emitting, isotropically scattering gray
medium with azimuthal symmetry. The P;-approxi-
mation of the spherical harmonics method is used to
solve the radiation problem. In this method the equa-
tion of radiative transfer takes the form [13]

d2G(r)
dr?
where

—K3t)= —4K%6T(r,t) in 0K 1< 15 {16)

K?=3(1—-w)
T(z, t) = temperature distribution in the lake.

. 2
$nK [I-FAIsin(%% t+¢>')}

%K cosh(Kto) + (1 +$K?)sinh(K1g)

q@)=

{[cosh(Kto) + K sinh(Kt,)] cosh(Kt) — [sinh(K7o) + 3K cosh(K1,)]sinh(K1)} .

Once the function G{r) is known from the solution of
equation {16) subject to appropriate boundary condi-
tions, the net radiative heat flux ¢’(z) is determined from

g =—§——-. (17

dr
We note that equation (16) is coupled to the energy
equation because it contains the unknown temperature
distribution function T'(z, t). For most lakes the source
term on the RHS of equation (16) is very small com-
pared to the solar radiation energy incident on the lake
surface. Then the coupling is removed and equation
(16} is simplified as:
gg—(ji}—I(ZG(ﬂr) =0 in 0<1<1,.
dr?
The boundary conditions for this equation are estab-
lished by assuming that the solar radiation incident on
the lake surface is specified and that no radiation is
coming from the bottom of the lake. With this con-
sideration the boundary conditions for equation (18)
are taken in the Marshak boundary condition approxi-
mation as [13].

(18)

G(r}—%dgt} = dn[T+Alsin@+¢)], =0 (19a)
60+339% o 1o (19B)
dr

The boundary condition (19a) assumes that the annual
variation of the intensity I of the solar radiation
incident on the water surface is specified as

I+ AIsin(Qr +¢')

where [ is an average value and Al is half of the annual
variation of the solar radiation intensity, Q = 2n/365
day ™! and the value of ¢’ depends on the conditions
at the start of computations.

The solution of equation (18) subject to the boundary
conditions (19) is straightforward. Knowing G(t), the
net radiative heat flux ¢'(z) is obtained from equation
{17) as

(20)

H
Noting that 1 = fiz and 1o = $H, the integral term j ¢" dz in equation(13) becomes
0

g'dz =

. . {2=n , 1

0 BK + 3+ +K?)Btanh(KBH)

. 1)

Introducing equations (15) and (21) into equation (13) the desired second equation becomes

[+ H 2y )+ H3G )] S+ 2+ G (T~ Ti)

w3 ﬂ[i+AI sin (% t +¢’>]- {tanh(KBH) +3K [1 -
+

ogx

pC,[BK +(3+3K*) B tanh{KH)]

ezl
cosh(KfH) 22)
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Fi1G. 1. Comparison of the computational and observed stratification cycle of Cayuga Lake,
New York.
To summarize, equations (11) and (22) provide two 200
coupled, first-order nonlinear ordinary differential
equations for the determination of the temperature 75 b
T,(t) in the upper layer and the depth h(t) of the thermo- ~— Computed
cline. Then, the temperature distribution in the lower s sl ® Measured (Ref 18)
layer is determined by equations (3), (5) and (6). g
]
RESULTS g @51
Equations (11) and (22) were solved numerically by £
using a Runge-Kutta method. The computations were 5 100
performed for the actual conditions that correspond to £
. . @
Cayuga Lake, New York [14] with the input par- o 75
ameters taken as [14, 15]
2 50 [
T, = 11+16sin{ —1t—0531 ), °C
¢ (365 >
25|
K’ = 180 Btu/ft? day °C
H = 200ft 1 I T N R T -
0 60 120 180 240
Time, days

2
I =1955+1120sin <'36£5 t —0-049>, Btu/ft day.

The semi-empirical relation between the wind stress
at the surface and the wind speed given by Munk and
Anderson [16] is used to evaluate the friction velocity
w*. The minimum temperature during spring homo-
thermy was assumed to be 2:9°C. The absorption and
scatlering coefficients for water and the particles in
suspension were assumed to be 0-31ft~! and 0-63ft !
respectively; these values were estimated from recent
data given in reference [17]. The calculations started
from the minimum surface temperature of the lake that
corresponded to the homothermal state. To avoid the
computational difficulty at timet = O, calculations were
started with some specific values of T(r) and h(r) slightly
away from the origin. Figure 1 shows a comparison
of the computed and observed [18, 19] values of tem-
perature cycle for the Cayuga Lake, New York. Figure 2
is a comparison of the computed and observed [18]
depth of the thermocline as a function of time. The
agreement between the observed and computed values
is fairly good.

F1G. 2. Comparison of calculated and ob-
served thermocline depths for Cayuga
Lake, New York.
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MODELE UNIDIMENSIONNEL POUR LES VARIATIONS SAISONNIERES
DES DISTRIBUTIONS DE TEMPERATURE DANS LES LACS STRATIFIES

Résumé— Un modéle unidimensionnel 4 deux couches est développé afin de décrire la structure thermique

des grandes étendues d’eau stratifiées. Le modéle tient compte de I'intéraction non-linéaire entre la

turbulence causée par le vent, les gradients des forces de gravité produits par I'échauffement de la surface

et des effets de I'atténuation du rayonnement solaire au sein de I'eau. Le modéle est appliqué 2 la prévision

des variations saisonniéres de la profondeur des thermoclines et la destribution verticale des températures

pendant la période de stratification du lac Cayuga (New-York). Les résultats sont en assez bon accord
avec I'ensemble des mesures.

EIN EINDIMENSIONALES MODELL FUR DIE SAISONBEDINGTEN VARIATIONEN
DER TEMPERATURVERTEILUNG IN GESCHICHTETEN GEWASSERN

Zusammenfassung —Es wird ein eindimensionales Zweilagenmodell entwickelt, das die thermische Struktur

in grollen, geschichteten Wassermengen beschreibt. Das Modell beriicksichtigt den nichtlinearen

Zusammenhang zwischen den windinduzierten Turbulenzen und den Auftriebsgradienten aufgrund der

Oberflichenerwidrmung wie den Einflufl der Absorption der Solarstrahlung im WasserkSrper. Es dient

zur Vorhersage der saisonbedingten Schwankungen der Tiefenlage der Thermokline und der vertikalen

Temperaturverteilung wahrend der Schichtungszeit des Cayuga-Sees, New York. Die Ergebnisse stimmen
relativ gut mit den Felddaten iiberein.

OJHOMEPHAS MOJEJIb CE3OHHOI'O UBMEHEHWS TEMIIEPATY Pbl
B CJ10AX O3EP

Annoramns — Co3gaHa ONHOMEpHas NBYXCIOWHash Modenb IUIA OMWCAHMSI TEPMOCTPYKTYphbl B

Qonswiux mMaccax crpatuduuuposaHHoit Boasl. B Momenu yuyuToiBaeTcs HENMUHERHOS BIAMMOACK-

CTBHE MEXY BbI3BAHHON BETPOM TypOYyIEHTHOCTBIO H NeperalaMu B TOAbEMHOMR CUIe, BLI3BAHHBIMH

HarpeBaHHeM MOBEPXHOCTH, 3ddexTaMHu 3aTyXaHHs COJIHEYHOM paadauudd B macce BOabl. Monens

HCMOMB3YeTCA IJA pacyera CE3IOHHOrO H3IMEHEHHMS TyOMHBI TEPMOKINMATA W BEPTHKANLHOIO

pacnpeneneHua TeMNEpaTypbl B nepHo cTpaTudnKaluuu Ha o3epe Kaitrora wT. Hulo-Mopk. Pesynn-
TAThI PACYETOB NOBOJIBHO XOPOLLIO COrMACYIOTCH C IKCOEPUMEHTABHBIMHA TaHHBIMM.



